

 Learn IT • Work IT • Love IT

+36 70 703 1933
hello@braininghub.com
www.braininghub.com

26 Gogol Street, Floor 1, H-1133 Budapest, Hungary

GIT training
Syllabus

The beginner training will focus on working with a local repository,
including branching and merging. You will learn, that working with git
can give you the safety, to be able to return always to any state which
was previously commited.

The intermediate training will introduce the remote repositories, and the
different strategies to work with them. For different organisational
structure there is matching method. We will learn how to use branches
if there are only a handful developers sharing a single repo, and also the
recommendations for geographically distributed, larger organisations
with different access right needs.

There is an optional "interactive rebase" workshop, which focuses on
how to work with long living branches, and how to solve merge conflicts.
All kind of modification is possible: changing a commit (message or
content) removing unwanted changes/files. You can even change the
order of commits, or join multiple commits into a single one.
Anything is possible.

1. Begginer - 1 x 4 hours
1.1 The tale of the 3 trees: repo/stage/workdir

1.2 Create a repo: `git init`

1.3 Your best friend: `git status`

1.4 First file about to save: `git add`

1.5 Lets make it safe: `git commit`

1.6 What are the plumbing commands?

1.7 Lets take a look into the .git dir: everithing is a file

1.8 Lets look into the stage: `git ls-files`

1.9 File modification

1.10 What did we do: `git diff`
1.11 Lets commit some more

 Learn IT • Work IT • Love IT

+36 70 703 1933
hello@braininghub.com
www.braininghub.com

26 Gogol Street, Floor 1, H-1133 Budapest, Hungary

1.12 How about a new file

1.13 Now we have a history: `git log`

1.14 Learn abour references: HEAD

1.15 How is your dady?

1.16 Back to the future: `git rest`

1.17 Soft/Mixed/Hard reset, what are they good for.

1.18 Lets label everything: `git tag`

1.19 Bug fixing process: `git branch`

1.20 Jumping between branches: `git checkout`

1.21 Get your changes into a different branche: `git merge`

1.22 What is git spagetthi.

1.23 A different type of merge: `git rebase`

1.24 Pros and cons of merge/rebase

2. Intermediate - 1 x 4 hours

2.1 Remote repo: `git clone`

2.2 What are the supported protocols: file/http/https/ssh/git

2.3 Remore repo = alias + url

2.4 Long branch names, what are those strange '/' characters:

`origin/master`

2.5 How to get your local repo up to date? No, its not `git pull`

2.6 The right way: `git fetch`

2.7 pull = fetch + merge

2.8 How to work on multiple branches

2.9 Merging in a team? Who is the quickest?

2.10 The slowest has the most task?!

2.11 Merge or Rebase the final countdown

2.12 Lets do both ways, and check the differences

2.13 What is forking?

 Learn IT • Work IT • Love IT

+36 70 703 1933
hello@braininghub.com
www.braininghub.com

26 Gogol Street, Floor 1, H-1133 Budapest, Hungary

2.14 How to send you changes to OSS projects?

2.15 Branching strategies: gitflow or github-flow

3. Customizable optional material depending on
knowledge level and client needs 1x4 hours

2018.03.23.

